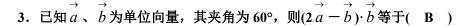
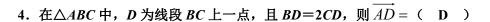
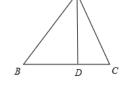
- 1. $\cos(\alpha \beta)$ 等于(A)
- **A.** $\cos \alpha \cos \beta + \sin \alpha \sin \beta$ **B.** $\cos \alpha \cos \beta \sin \alpha \sin \beta$ **C.** $\sin \alpha \cos \beta + \cos \alpha \sin \beta$ **D.** $\sin \alpha \cos \beta \cos \alpha \sin \beta$
- 2. 已知 $\cos x = -\frac{1}{4}$, x 为第二象限角,那么 $\sin 2x = (C)$ A. $-\frac{\sqrt{15}}{4}$ B. $\pm \frac{\sqrt{15}}{8}$ C. $-\frac{\sqrt{15}}{8}$

解: 因为 $\cos x = -\frac{1}{4}$, x 为第二象限角,所以 $\sin x = \frac{\sqrt{15}}{4}$, 所以 $\sin 2x = 2\sin x \cos x = 2 \times \frac{\sqrt{15}}{4} \times \begin{bmatrix} -\frac{1}{4} \end{bmatrix} = -\frac{\sqrt{15}}{6}$







A.
$$\vec{AD} = \frac{3}{4} \vec{AB} + \frac{1}{4} \vec{AC}$$

B.
$$\vec{AD} = \frac{1}{4} \vec{AB} + \frac{3}{4} \vec{AC}$$

C.
$$\vec{AD} = \frac{2}{3}\vec{AB} + \frac{1}{3}\vec{AC}$$

A.
$$\vec{AD} = \frac{3}{4} \vec{AB} + \frac{1}{4} \vec{AC}$$
 B. $\vec{AD} = \frac{1}{4} \vec{AB} + \frac{3}{4} \vec{AC}$ **C.** $\vec{AD} = \frac{2}{3} \vec{AB} + \frac{1}{3} \vec{AC}$ **D.** $\vec{AD} = \frac{1}{3} \vec{AB} + \frac{2}{3} \vec{AC}$

【解析】: 如图, $\therefore BD = 2CD$; $\therefore \vec{AD} - \vec{AB} = 2(\vec{AC} - \vec{AD})$, $\therefore \vec{AD} = \frac{1}{3}\vec{AB} + \frac{2}{3}\vec{AC}$.

- 5. 若 $\pi < \alpha < 2\pi$, 则化简 $\sqrt{\frac{1+\cos\alpha}{2}}$ 的结果是(C) A. $\sin\frac{\alpha}{2}$ B. $\cos\frac{\alpha}{2}$ C. $-\cos\frac{\alpha}{2}$ D. $-\sin\frac{\alpha}{2}$
- 6. 给出下列命题: ①两个具有公共终点的向量一定是共线向量; ②两个向量不能比较大小, 但它们的模能比较大小; ③若 $\lambda \vec{a} = \vec{0}$ (λ 为实数),则 λ 必为零; ④已知 λ , μ 为实数,若 $\lambda \vec{a} = \mu \vec{b}$,则 \vec{a} 与 \vec{b} 共线,其中错误命题的个数为(
 - A. 1
- B. 2
- C. 3

【解析】对于①,两个具有公共终点的向量,不一定是共线向量,二①错误;对于②,向量是有方向和大小的矢量, 不能比较大小,但它们的模能比较大小,二②正确;对于③, $\lambda \vec{a} = \vec{0}$ 时 $(\lambda$ 为实数), $\lambda = 0$ 或 $\vec{a} = \vec{0}$,二③错误;对 于④,若 $\lambda = \mu = 0$ 时, $\lambda \vec{a} = \mu \vec{b} = \vec{0}$,此时 $\vec{a} = \vec{b}$ 不一定共线,∴④错误;综上,其中错误命题为①③④,共3个.

7. $\exists \exists \sin \left(\frac{\pi}{6} + \alpha\right) = \frac{1}{4}$, $\exists \cos \left(\frac{2\pi}{2} - 2\alpha\right) = (D)$ A. $\frac{15}{16}$ B. $-\frac{15}{16}$ C. $\frac{7}{6}$ D. $-\frac{7}{8}$

【解析】 : $\sin(\frac{\pi}{2} + \alpha) = \sin[\frac{\pi}{2} + (\alpha - \frac{\pi}{3})] = \cos(\alpha - \frac{\pi}{3}) = \frac{1}{4}$, : $\cos(\frac{2\pi}{2} - 2\alpha) = \cos(2\alpha - \frac{2\pi}{3}) = \cos((\alpha - \frac{\pi}{3})) = \cos(($ $=2\cos^2(\alpha-\frac{\pi}{3})-1=2\times(\frac{1}{4})^2-1=-\frac{7}{8}.$

8. 若 tan A+tan B+ $\sqrt{3}$ = $\sqrt{3}$ tan Atan B,则角 A+B 的值可以是(B) A. $\frac{\pi}{3}$ B. $\frac{2\pi}{3}$ C. $\frac{\pi}{4}$

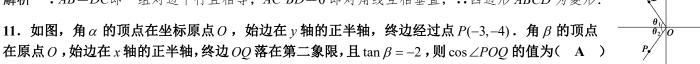
解析: 选 B 由已知,得 $\tan A + \tan B = \sqrt{3} (\tan A \tan B - 1)$,即 $\frac{\tan A + \tan B}{1 - \tan A \tan B} = -\sqrt{3}$, $\therefore \tan(A + B) = -\sqrt{3}$.

- 9. 设向量 $\vec{a}=(m-2,m+3)$, $\vec{b}=(2m+1,m-2)$, 若 \vec{a} 与 \vec{b} 的夹角大于 90°, 则实数 m 的取值范围是(A)
- **B.** $\left(-\infty, -\frac{4}{3}\right) \cup \left(2, +\infty\right)$ **C.** $\left(-2, \frac{4}{3}\right)$ **D.** $\left(-\infty, 2\right) \cup \left(\frac{4}{3}, +\infty\right)$

【解析】:a = b的夹角大于 90°, $a \cdot b < 0$, (m-2)(2m+1) + (m+3)(m-2) < 0, 即 $3m^2 - 2m - 8 < 0$, $-\frac{4}{3} < m < 2$.

- 10. 在四边形 ABCD 中, $\overrightarrow{AB} = \overrightarrow{DC}$,且 $\overrightarrow{AC} \cdot \overrightarrow{BD} = 0$,则四边形 ABCD 是(B)
 - A. 矩形
- B. 菱形
- C. 直角梯形

解析 $\vec{AB} = \vec{DC}$ 即一组对边平行且相等, $\vec{AC} \cdot \vec{BD} = 0$ 即对角线互相垂直, $\vec{AC} \cdot \vec{AB} = \vec{DC}$ 即边形 \vec{ABCD} 为菱形.



$$\mathbf{A.} - \frac{\sqrt{5}}{5}$$

B.
$$-\frac{11\sqrt{5}}{25}$$

C.
$$\frac{11\sqrt{5}}{25}$$

D.
$$\frac{\sqrt{5}}{5}$$

A.
$$-\frac{\sqrt{5}}{5}$$
 B. $-\frac{11\sqrt{5}}{25}$ C. $\frac{11\sqrt{5}}{25}$ D. $\frac{\sqrt{5}}{5}$ 【解析】 $\tan \beta = \tan(\pi - \theta_1) = -\tan \theta_1 = -2$,

$$\therefore \tan \theta_1 = 2 , \quad \tan \theta_2 = \frac{4}{3} . \quad \therefore \tan \angle POQ = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2} = -2 , \quad \therefore \frac{\pi}{2} < \angle POQ < \pi . \quad \therefore \cos \angle POQ = -\frac{\sqrt{5}}{5} .$$

12. 设
$$\vec{a} = (a_1, a_2), \vec{b} = (b_1, b_2),$$
 定义一种向量积: $\vec{a} \otimes \vec{b} = (a_1, a_2) \otimes (b_1, b_2)$

$$=(a_1b_1,a_2b_2)$$
. 已知 $\vec{m}=(2,\frac{1}{2})$, $\vec{n}=(\frac{\pi}{3},0)$,点 $P(x,y)$ 在 $y=\sin x$ 的图象上运动,点 Q 在 $y=f(x)$ 的图象上运动.且满足 $\overset{\rightarrow}{OQ}=\vec{m}\otimes \overset{\rightarrow}{OP}+\vec{n}$ (其中 O 为坐标原点),则 $y=f(x)$ 的最大值 A 及最小正周期 T 分别为(C)

B. 2,
$$4\pi$$

D.
$$\frac{1}{2}$$
, π

13.
$$\cos^2 15^\circ - \sin^2 15^\circ$$
 的值为_____(填数值) $\frac{\sqrt{3}}{2}$

14.已知点
$$A(1, -2)$$
,若线段 AB 的中点坐标为 $(3,1)$ 且 \overrightarrow{AB} 与向量 $\overrightarrow{a} = (1, \lambda)$ 共线,则 $\lambda = \underline{\qquad \qquad } \cdot \frac{3}{2}$

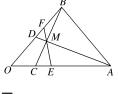
解析,点 B 的坐标为(3×2-1,1×2+2)=(5,4),则
$$\vec{AB}$$
=(4,6). 又 \vec{AB} 与 a =(1, λ)共线,则 4λ -6=0,得 λ = $\frac{3}{2}$.

15.设当
$$x=\theta$$
时,函数 $f(x)=\sin x+\sqrt{3}\cos x$ 取得最大值,则 $\tan (\theta+\frac{\pi}{4})=$ _____(填数值). $2+\sqrt{3}$

【解析】:
$$f(x) = \sin x + \sqrt{3}\cos x = 2\sin(x + \frac{\pi}{3})$$
; : $\exists x = \theta$ 时,函数 $f(x)$ 取得最大值: $\theta + \frac{\pi}{3} = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$;

$$\therefore \theta = \frac{\pi}{6} + 2k\pi, \ k \in \mathbb{Z}; \ \therefore \tan(\theta + \frac{\pi}{4}) = \tan(\frac{\pi}{6} + 2k\pi + \frac{\pi}{4}) = \tan(\frac{\pi}{4} + \frac{\pi}{6}) = \frac{1 + \frac{\sqrt{3}}{3}}{1 - \frac{\sqrt{3}}{3}} = 2 + \sqrt{3}.$$

16、如图所示,在 $\triangle ABO$ 中, $\overrightarrow{OC} = \frac{1}{4}\overrightarrow{OA}$, $\overrightarrow{OD} = \frac{1}{2}\overrightarrow{OB}$,AD 与 BC 相交于点 M,在线段 AC



上取一点
$$E$$
,在线段 BD 上取一点 F ,使 EF 过点 M ,设 $\overrightarrow{OE} = \lambda \overrightarrow{OA}$, $\overrightarrow{OF} = \mu \overrightarrow{OB}$,那么 $\frac{1}{\lambda} + \frac{3}{\mu} =$ ____

$$\mathbf{m}$$
:由于 E,M,F 三点共线,所以存在实数 $\eta(\eta \neq -1)$ 使得 $\overrightarrow{EM} = \eta \overrightarrow{MF}, \overrightarrow{EO} + \overrightarrow{OM} = \eta(\overrightarrow{MO} + \overrightarrow{OF})$,于是 $\overrightarrow{OM} = \overrightarrow{OE} + \eta \overrightarrow{OF}$.

又
$$\overrightarrow{OE} = \lambda \overrightarrow{OA}$$
, $\overrightarrow{OF} = \mu \overrightarrow{OB}$, 所以 $\overrightarrow{OM} = \frac{\lambda \overrightarrow{OA} + \eta \mu \overrightarrow{OB}}{1 + \eta} = \frac{\lambda}{1 + \eta} a + \frac{\mu \eta}{1 + \eta} b$, 所以 $\frac{1}{7} a + \frac{3}{7} b = \frac{\lambda}{1 + \eta} a + \frac{\mu \eta}{1 + \eta} b$, 则
$$\frac{\lambda}{1 + \eta} = \frac{\lambda}{1 + \eta} a + \frac{\mu \eta}{1 + \eta} b$$
, 所以 $\frac{1}{7} a + \frac{3}{7} b = \frac{\lambda}{1 + \eta} a + \frac{\mu \eta}{1 + \eta} b$, 则 $\frac{\mu \eta}{1 + \eta} = \frac{3}{7}$,

- 17. (10分) 设平面三点 A(1,0), B(0,1), C(2,5).
 - (1) 试求向量 \overrightarrow{AB} 的模; (2) 若向量 \overrightarrow{AB} 与 \overrightarrow{AC} 的夹角为 θ , 求 $\cos\theta$; (3) 求向量 \overrightarrow{AB} 在 \overrightarrow{AC} 上的投影.

【解析】解: (1) 因为,所以 \vec{AB} = (0, 1) - (1, 0) = (-1, 1), $|AB| = \sqrt{2}$ _____3 分

(2) 由 (1) 知
$$\vec{AB}$$
 = (-1, 1), \vec{AC} = (1, 5), 所以 $\cos \theta = \frac{-1+5}{\sqrt{(-1)^2+1^2} \times \sqrt{1^2+5^2}} = \frac{2\sqrt{13}}{13}$. ------7分

(3) 由 (2) 知向量与的夹角的余弦为 $\cos \theta = \frac{2\sqrt{13}}{13}$,且 $|\overrightarrow{AB}| = \sqrt{2}$. 所以向量 \overrightarrow{AB} 在 \overrightarrow{AC} 上在上的投影为

$$|\vec{AB}|\cos\theta = \sqrt{2} \times \frac{2\sqrt{13}}{13} = \frac{2\sqrt{26}}{13}$$
. -----12 $\hat{\pi}$

- 18. (12 分) 已知0 < $\alpha < \frac{\pi}{2}$, $0 < \beta < \frac{\pi}{2}$, $\sin \alpha = \frac{4}{5}$, $\cos (\beta + \alpha) = \frac{5}{13}$.
- (1) 求 $\sin(\alpha + \beta)$ 的值 (2)求 $\sin\beta$ 的值;(3)求 $\frac{\sin 2\alpha}{\sin^2 \alpha + \cos 2\alpha}$ 的值.

解: (1) $\sin (\alpha + \beta) = \frac{12}{13}$, -----2 分

- (3) 由于 $sin\alpha = \frac{4}{5}$, $cos\alpha = \frac{3}{5}$ 所以 $tan\alpha = \frac{4}{3}$. 所以 $\frac{sin2\alpha}{sin^2\alpha + cos2\alpha} = \frac{2sin\alpha cos\alpha}{sin^2\alpha + cos^2\alpha sin^2\alpha} = 2tan\alpha = \frac{8}{3}$. -----10 分
- 19. (12 分) 已知 $|\vec{a}| = 2|\vec{b}| = 2$,且向量 \vec{a} 在向量 \vec{b} 方向上的投影为-1. (1) 求 \vec{a} 与 \vec{b} 的夹角 θ ;
- (2) 求 $(\vec{a} 2\vec{b}) \cdot \vec{b}$; (3) 当 λ 为何值时,向量 $\lambda \vec{a} + \vec{b}$ 与向量 $\vec{a} 3\vec{b}$ 互相垂直?

解: (1): |a|=2|b|=2, |a|=2, |b|=1.又 a 在 b 方向上的投影为 $|a|\cos\theta=-1$, |a|=2, |a

$$(2)(a-2b)\cdot b = a\cdot b - 2b^2 = |a||b|\cos\theta - 2b^2 = -1 - 2 = -3.$$

--8分

(3) : $\lambda a + b$ 与 a - 3b 互相垂直, : $(\lambda a + b) \cdot (a - 3b) = \lambda a^2 - 3\lambda a \cdot b + b \cdot a - 3b^2$

$$=4\lambda+3\lambda-1-3=7\lambda-4=0$$
, $\therefore \lambda=\frac{4}{7}$. ---12 分 (如果向量没有箭头,直接扣掉 2 分)

- 20. (12分) 已知锐角三角形 ABC 中, $\sin(A+B) = \frac{3}{5}$, $\sin(A-B) = \frac{1}{5}$.
- (1) 求证: $\tan A = 2\tan B$; (2) 设 AB = 3, 求 AB 边上的高.

(1)证明
$$\because \sin(A+B) = \frac{3}{5}$$
, $\sin(A-B) = \frac{1}{5}$, $\therefore \begin{cases} \sin A \cos B + \cos A \sin B = \frac{3}{5}, \\ \sin A \cos B - \cos A \sin B = \frac{1}{5} \end{cases}$ $\Rightarrow \begin{cases} \sin A \cos B = \frac{2}{5}, \\ \cos A \sin B = \frac{1}{5} \end{cases}$ $\Rightarrow \frac{\tan A}{\tan B} = 2.$

∴ tan *A*=2tan *B*. ------5 分

(2)解 : $\frac{\pi}{2}$ <A+B< π , $\sin(A+B)=\frac{3}{5}$, : $\tan(A+B)=-\frac{3}{4}$, 即 $\frac{\tan A + \tan B}{1 - \tan A \tan B} = -\frac{3}{4}$.将 $\tan A = 2\tan B$ 代入上式并整理得

$$2\tan^2 B - 4\tan B - 1 = 0$$
,解得 $\tan B = \frac{2\pm\sqrt{6}}{2}$,舍去负值,得 $\tan B = \frac{2+\sqrt{6}}{2}$. $\therefore \tan A = 2\tan B = 2+\sqrt{6}$. -------8 分

设 AB 边上的高为 CD,则 $AB=AD+DB=\frac{CD}{\tan A}+\frac{CD}{\tan B}=\frac{3CD}{2+\sqrt{6}}$,由 AB=3,得 $CD=2+\sqrt{6}$.

21. (12 分) 己知向量
$$\vec{a} = (2\sqrt{3}\sin x)$$
, $2\cos^2 x$, $\vec{b} = (2\cos x, -2)$ 函数 $f(x) = \vec{a} \cdot \vec{b} + m$, $\mathcal{L}f(\frac{\pi}{6}) = 7$.

(1) 求 m 的值; (2) 当 $x \in [0, \frac{\pi}{4}]$ 时,不等式 c < f(x) < 2c + 15 恒成立,求实数 c 的取值范围.

【解析】解: (1) 由题设可得
$$f(x) = \vec{a} \cdot \vec{b} + m = 4\sqrt{3}sinxcosx - 4cos^2x + m = 4(\frac{\sqrt{3}}{2}sin2x - \frac{1}{2}cos2x) + m - 2$$

= $4sin(2x - \frac{\pi}{6}) + m - 2$, $\therefore f(\frac{\pi}{6}) = 7$, $\therefore 4sin\frac{\pi}{6} - 2 + m = 7$, 得 $m = 7$; -------5分

$$c < 3$$
 ,解得 $\sqrt{3} - 5 < c < 3$,故实数 c 的取值范围为($\sqrt{3} - 5$, 3). -----------12 分 $2c + 15 > 2\sqrt{3} + 5$

22. (12 分) 如图,矩形 ABCD 的长 $AD=2\sqrt{3}$,宽 AB=1,A,D 两点分别在 x,y 轴的正半轴上移动,B,C 两点在第一象限, $\angle OAD=\theta$.

(1) 当
$$\theta = \frac{\pi}{6}$$
时,求 $\overrightarrow{OB} \bullet \overrightarrow{OC}$; (2) 求 OB 的最大值.

解 (1)如图所示,当 θ =30°时, $Rt\Delta AOD$ 中OA=3,OD= $\sqrt{3}$. 过点 B 作 $BH\bot OA$,垂足为 H. AH= $\frac{1}{2}$,BH= $\frac{\sqrt{3}}{2}$.

所以
$$B(\frac{7}{2}, \frac{\sqrt{3}}{2})$$
, $\therefore \overrightarrow{OB} = (\frac{7}{2}, \frac{\sqrt{3}}{2})$ 同理 $C(\frac{1}{2}, \frac{3\sqrt{3}}{2})$, $\therefore \overrightarrow{OC} = (\frac{1}{2}, \frac{3\sqrt{3}}{2})$ ------3 分

$$\therefore \overrightarrow{OB} \bullet \overrightarrow{OC} = \frac{7}{2} \times \frac{1}{2} + \frac{\sqrt{3}}{2} \times \frac{3\sqrt{3}}{2} = \frac{7}{4} + \frac{9}{4} = 4$$
 ------5 分(点 C 的坐标可用几何法,也可向量法求 OC)

(2) 又因为
$$\angle OAD = \theta$$
 $\left(0 < \theta < \frac{\pi}{2}\right)$, 则 $\angle BAH = \frac{\pi}{2} - \theta$, $OA = 2\sqrt{3}\cos\theta$, $BH = \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$, $AH = \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$,