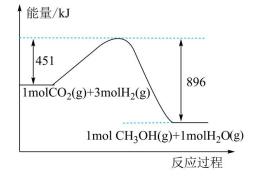
峨眉二中高 2024 级高二上期 10 月考化学试卷

命题人: 伍小蓉 审题人: 邓逸晨


考试时间 75 分钟,满分 100 分

注意事项:

- 1. 答题前,考生务必在答题卡上将自己的姓名、座位号、准考证号用 0.5 毫米的黑色签字笔填写清楚,考生 考试条形码由监考老师粘贴在答题卡上的"贴条形码区"。
- 2. 选择题使用 2B铅笔填涂在答题卡上对应题目标号的位置上,如需改动,用橡皮擦擦干净后再填涂其它答案; 非选择题用 0.5 毫米黑色签字笔在答题卡的对应区域内作答, 超出答题区域答题的答案无效: 在草稿纸上、试卷 上答题无效。
 - 3. 考试结束后由监考老师将答题卡收回。

可能用到的相对原子质量: H1 C12 N14 016

- 一、选择题:本题共14小题,每小题3分,共42分。在每小题给出的四个选项中,只有一项是符合题目要求的。
- 1.下列一些诗句、谚语等包含的反应过程为反应物总能量比生成物总能量高的是
- A. 千锤万凿出深山, 烈火焚烧若等闲 B. 滴水能把石穿透, 万事功到自然成
- C. 爆竹声中一岁除,春风送暖入屠苏 D. 只要功夫深,铁杵磨成针
- 2.下列过程中, 化学反应速率的增大对人类有益的是
- A. 钢铁的腐蚀
- B. 肉类的腐败 C. 汽车尾气的处理 D. 塑料的老化
- 3.可逆反应 A(g) + 2B(g) 3C(g) + 4D(g),在四种不同情况下的反应速率如下,其中反应进行得最快的 是()
- A. $v(A) = 0.15 \text{ mol/}(L \cdot \text{min})$
- B. $v(B) = 0.5 \text{ mol/}(L \cdot \text{min})$
- C. $v(C) = 0.4 \text{ mol/}(L \cdot \text{min})$
- D. $v(D) = 0.02 \text{ mo} 1/(L \cdot s)$
- 4.下列有关活化分子与活化能的说法正确的是()
- A. 活化分子间所发生的碰撞均为有效碰撞
- B. 活化分子的平均能量称为活化能
- C. 增大压强可使活化分子百分数增加,有效碰撞次数增多,反应速率加快
- D. 升高温度可使活化分子百分数增加,有效碰撞次数增多,反应速率加快
- 5. 我国科学家在催化加氢制甲醇研究方面取得进展,反应为 $CO_2(g)+3H_2(g)$ \rightleftharpoons $CH_3OH(g)+H_2O(g)$ $\triangle H_0$ 该反 应的能量变化如图所示, 下列说法正确的是

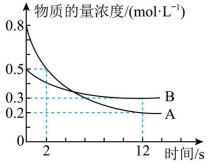
- A. 该反应为吸热反应, \triangle H>0
- B. 加入催化剂, △H 减小
- C. 该反应正反应的活化能为 451kJ·mol-1
- D. 在密闭容器中加入 1mol CO_2 和 3mol H_2 , 充分反应后放出 445 kJ的热量
- 6.下列表述正确的是

- A. $S(s) + O_2(g) = SO_2(g)\Delta H_1$, $S(g) + O_2(g) = SO_2(g)\Delta H_2$ $M \Delta H_1 > \Delta H_2$
- B. 已知 C(金刚石, s)=C(石墨, s) $\Delta H = -1.9kJ \cdot mol^{-1}$,则金刚石的稳定性大于石墨
- C. 已知 H₂ 的燃烧热为 285.5kJ·mol⁻¹,则水分解的热化学方程式为:

 $2H_2O(g)=2H_2(g)+O_2(g) \triangle H=+285.5kJ \cdot mol^{-1}$

- D. 已知 $2C(s) + O_2(g) = 2CO(g)\Delta H = -221kJ \cdot mol^{-1}$,可知 C 的燃烧热 $\Delta H = -110.5kJ \cdot mol^{-1}$
- 7.借助盐酸与 NaOH 溶液反应,用如图所示装置测定中和反应的反应热。下列说法正确的是
- A. 用温度计测量酸溶液的温度后立即测量碱溶液的温度
- B. 为了保证盐酸完全被中和,采用稍过量的 NaOH 溶液
- C. 若用同浓度的醋酸溶液代替盐酸进行上述实验, 计算所得反应热 ΔH 偏小
- D. 可以用铜丝代替玻璃搅拌棒,因为铜丝不与盐酸反应

8. 己知:
$$2H_2(g) + O_2(g) = 2H_2O(1)$$
 $\Delta H = -571.6 \text{ kJ} \cdot \text{mol}^{-1}$


$$2CH_3OH(1) + 3O_2(g) = 2CO_2(g) + 4H_2O(1)$$
 $\Delta H = -1452 \text{ kJ} \cdot \text{mol}^{-1}$

$$H^{+}(aq) + OH^{-}(aq) = H_{2}O(1)$$
 $\Delta H = -57.3 \text{ kJ} \cdot \text{mol}^{-1}$

下列说法正确的是

- A. $H_2(g)$ 的燃烧热为 $\Delta H = -571.6 \text{ kJ} \cdot \text{mol}^{-1}$
- B. 同质量的 $H_2(g)$ 和 $CH_3OH(1)$ 完全燃烧, $H_2(g)$ 燃烧放出的热量多
- C. $H_2SO_4(aq) + Ba(OH)_2(aq) = BaSO_4(s) + 2H_2O(1)$ $\triangle H = -57.3kJ \text{ mol}^{-1}$
- D. $3H_2(g) + CO_2(g) = CH_3OH(1) + H_2O(1)$ $\Delta H = +135.9 \text{ kJ} \cdot \text{mol}^{-1}$

9.某温度下,在 2L 恒容密闭容器中投入一定量的 A、B,发生反应: $3A(g)+bB(g) \Longrightarrow cC(g)+2D(s)$, 12 s 时生成 C 的物质的量为 0.8 mol(反应进程如图所示)。下列说法中正确的是

- A. 12 s 时 B 的转化率为 60%
- B. 0~2s 内, D 的平均反应速率为 0.2moL-1·s-1
- C. 化学计量系数之比 b:c=1:2
- D. 图中两曲线相交时, 反应已达平衡

10.对可逆反应 2A(s)+3B(g) ⇒ 2C(g)+2D(g) $\Delta H<0$,在一定条件下达到平衡,下列有关叙述正确的是

①增加 A 的量,平衡向正反应方向移动

②升高温度,平衡向逆反应方向移动, $\upsilon_{\mathbb{R}}$ 减小

③压强增大一倍,平衡正向移动

④ 増大 B 的浓度, ロェ> ロ ji

⑤加入催化剂,平衡向正反应方向移动

A. 12

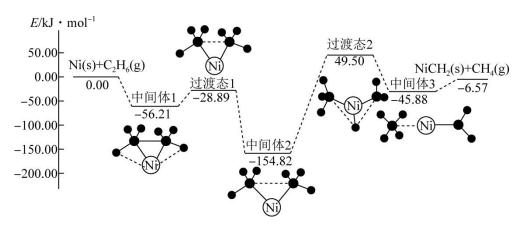
- B. ④
- C. 34
- D. (4)(5)

11.t°C时,一定量的混合气体在某恒容密闭容器中发生反应: aA(g)+bB(g) \rightleftharpoons cC(g)+dD(g) Δ H > 0,平衡后测得 B 气体的浓度为 0.6 mol·L⁻¹。其他条件不变,将密闭容器的容积扩大 1 倍,重新达到平衡后,测得 B 气体的浓度为 0.4 mol·L⁻¹。下列叙述错误的是

A. a+b < c+d

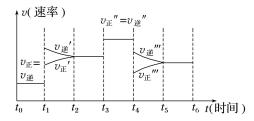
- B. 重新达到平衡时, A 气体的浓度减小
- C. 重新达到平衡时,D 气体的体积分数减小D. 恒温下扩大容器体积,正逆反应速率均减小12.在 Ag^+ 催化作用下, Cr^{3+} 被 $S_2O_8^{2-}$ 氧化为 $Cr_2O_7^{2-}$ 的机理为:
- ① $S_2O_8^{2-}+2Ag^+=2SO_4^{2-}+2Ag^{2+}$ 慢
- (2) $2Cr^{3+} + 6Ag^{2+} + 7H_{2}O = 6Ag^{+} + 14H^{+} + Cr_{2}O_{7}^{2-}$ (b)

下列有关说法正确的是


A. 反应速率与 $c(Ag^+)$ 无关

- B. Ag²⁺是该反应的催化剂
- C. Ag^{+} 能降低该反应的活化能
- $D_{\bullet} v\left(Cr^{3+}\right) = 2v\left(S_{2}O_{8}^{2-}\right)$

13.从下列实验事实所引出的相应结论正确的是


选项	实验事实	结论
A	其他条件相同,Na ₂ S ₂ O ₃ 溶液与稀硫酸反应时,Na ₂ S ₂ O ₃ 溶液浓度越大,析出S沉淀所需时间越短	当其他条件不变时,增大反应物浓 度,化学反应速率加快
В	在化学反应前后,催化剂的质量和化学性质都没有发生改变	催化剂不参与化学反应
С	取1mL0.1mol·L ⁻¹ KI溶液于试管中,加入5mL0.1mol·L ⁻¹ FeCl ₃ 溶液, 滴入5滴15% KSCN溶液,溶液变血红色	KI 与 FeCl ₃ 的反应是可逆反应
D	在容积可变的密闭容器中发生反应 $H_2(g)+I_2(g)$ \rightleftharpoons $2HI(g)$,把容积缩小一倍,气体颜色加深	增大压强,平衡逆移

14.Ni 可活化C₂H₆放出CH₄, 其反应历程如下图所示:

下列关于该活化历程的说法正确的是

- A. 恒容条件下,充入 Ne 使体系压强增大,可加快化学反应速率
- B. 该反应的决速步骤是:中间体 1→中间体 2
- C. Ni 是该反应的催化剂,可加快反应速率
- D. 该反应的热化学方程式为 $Ni(s)+C_2H_6(g)=NiCH_2(s)+CH_4(g)\Delta H=-6.57$ kJ/mol
- 二、非选择题:本题共4小题,共58分
- 15. (12 分) 密闭容器中发生如下反应: A(g)+3B(g) \longrightarrow 2C(g) $\Delta H < 0$,根据 v t 图像,回答下列问题。

(1)下列时刻所改变的外界条件分别是:

t_{1_____}; t_{3_____}; t_{4____}

(2)物质 A 的体积分数最大的时间段是。
(3)反应速率最大的时间段是。
$(4)t_0\sim t_1$ 、 $t_3\sim t_4$ 、 $t_5\sim t_6$ 时间段的平衡常数 K_0 、 K_3 、 K_5 的关系为。
16. (14 分) 回答下列问题:
(1)在发射"神舟"七号的火箭推进器中装有肼(N_2H_4)($M=32g/mol$)和过氧化氢,当两者混合时即产生气体,并放
出大量的热。已知: $N_2H_4(1)+2H_2O_2(1)=N_2(g)+4H_2O(g)$ $\Delta H=-641.6kJ\cdot mol^{-1}$;
$H_2O(l)=H_2O(g)$ $\Delta H=+44.0kJ\cdot mol^{-1}$,若用 $6.4g$ 液态肼与足量过氧化氢反应生成氮气和液态水,则整个过程中
放出的热量为。
(2)"嫦娥二号"卫星使用液态四氧化二氮和液态偏二甲肼 $(C_2H_8\ N_2)(M=60g\ /\ mol)$ 作推进剂。 N_2O_4 与偏二甲肼燃
烧产物只有 $CO_2(g)$ 、 $H_2O(g)$ 、 $N_2(g)$,并放出大量热,已知 $10.0g$ 液态偏二甲肼与液态四氧化二氮完全燃烧可
放出 $425k$ J 热量, $1mol$ 液态偏二甲肼 $\left(C_2H_8N_2\right)$ 发生该反应的热化学方程式为。
(3)火箭的常规燃料是液态四氧化二氮和液态肼 $\left(N_2H_4\right)$, N_2O_4 作氧化剂,有人认为若用氟气代替四氧化二氮作氧
化剂,反应释放的能量更大(两者反应生成氮气和氟化氢气体)。
已知: ① $N_2H_4(1) + O_2(g) = N_2(g) + 2H_2O(g)$ $\Delta H = -534.0 \text{ kJ} \cdot \text{mol}^{-1}$
② $\frac{1}{2}$ H ₂ (g) + $\frac{1}{2}$ F ₂ (g) = HF(g) Δ H = -269.0 kJ·mol ⁻¹
$(3) H_2(g) + \frac{1}{2} O_2(g) = H_2 O(g) \Delta H = -242.0 \text{ kJ} \cdot \text{mol}^{-1}$
$(3) H_2(g) + \frac{1}{2} O_2(g) = H_2 O(g) \Delta H = -242.0 \text{ kJ} \cdot \text{mol}^{-1}$
③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$
③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ $\Delta H = -242.0 kJ \cdot mol^{-1}$ 请写出 $lmol$ 肼和氟气反应的热化学方程式:。 (4)常温常压下,1 克乙醇(M=46g/mol)完全燃烧生成 CO_2 气体和液态水放出的热量为52.0KJ,写出表示乙醇燃烧
③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ $\Delta H = -242.0 kJ \cdot mol^{-1}$ 请写出 $lmol$ 肼和氟气反应的热化学方程式:。 (4)常温常压下,1 克乙醇(M=46g/mol)完全燃烧生成 CO_2 气体和液态水放出的热量为52.0KJ,写出表示乙醇燃烧热的热化学方程式:。
③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ $\Delta H = -242.0 \text{ kJ} \cdot \text{mol}^{-1}$ 请写出 1mol 腓和氟气反应的热化学方程式:。 (4)常温常压下,1 克乙醇(M=46g/mol)完全燃烧生成 CO_2 气体和液态水放出的热量为 52.0KJ ,写出表示乙醇燃烧热的热化学方程式:。 (5)同素异形体相互转化的反应热相当小而且转化速率较慢,有时还很不完全,测定反应热很困难。现在可根据
③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ $\Delta H = -242.0 \text{ kJ} \cdot \text{mol}^{-1}$ 请写出 Imol 腓和氟气反应的热化学方程式:。 (4)常温常压下,1 克乙醇(M=46g/mol)完全燃烧生成 CO_2 气体和液态水放出的热量为 52.0 KJ,写出表示乙醇燃烧热的热化学方程式:。 (5)同素异形体相互转化的反应热相当小而且转化速率较慢,有时还很不完全,测定反应热很困难。现在可根据盖斯提出的"不管化学过程是一步完成或分几步完成,这个总过程的热效应是相同的"观点来计算反应热。已知:
$3 H_2(g) + \frac{1}{2} O_2(g) = H_2 O(g)$ $\Delta H = -242.0 kJ \cdot mol^{-1}$ 请写出 $lmol$ 腓和氟气反应的热化学方程式:。 (4)常温常压下,1 克乙醇(M=46g/mol)完全燃烧生成 CO_2 气体和液态水放出的热量为 $52.0 kJ$,写出表示乙醇燃烧热的热化学方程式:。 (5)同素异形体相互转化的反应热相当小而且转化速率较慢,有时还很不完全,测定反应热很困难。现在可根据盖斯提出的"不管化学过程是一步完成或分几步完成,这个总过程的热效应是相同的"观点来计算反应热。已知: $P_4(白磷,s) + 5O_2(g) = P_4 O_{10}(s)$ $\Delta H = -2983.2 kJ \cdot mol^{-1}$ ①
$\label{eq:hamiltonian}$ ③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$
$3 \mathrm{H}_2(\mathrm{g}) + \frac{1}{2} \mathrm{O}_2(\mathrm{g}) = \mathrm{H}_2\mathrm{O}(\mathrm{g}) \Delta \mathrm{H} = -242.0 \mathrm{kJ \cdot mol}^{-1}$ 请写出 Imol 肼和氟气反应的热化学方程式:。 (4)常温常压下,1克乙醇(M=46g/mol)完全燃烧生成 CO_2 气体和液态水放出的热量为 52.0 kJ,写出表示乙醇燃烧热的热化学方程式:。 (5)同素异形体相互转化的反应热相当小而且转化速率较慢,有时还很不完全,测定反应热很困难。现在可根据盖斯提出的"不管化学过程是一步完成或分几步完成,这个总过程的热效应是相同的"观点来计算反应热。已知: $\mathrm{P}_4(\mathrm{白磷}, \mathrm{s}) + 5 \mathrm{O}_2(\mathrm{g}) = \mathrm{P}_4\mathrm{O}_{10}(\mathrm{s}) \Delta \mathrm{H} = -2983.2 \mathrm{kJ \cdot mol}^{-1}$ ① $\mathrm{P}(\mathfrak{L}_3 \mathrm{quad}, \mathrm{s}) + 5 \mathrm{O}_2(\mathrm{g}) = 1/4 \mathrm{P}_4\mathrm{O}_{10}(\mathrm{s}) \Delta \mathrm{H} = -738.5 \mathrm{kJ \cdot mol}^{-1}$ ② 则白磷转化为红磷的热化学方程式为。相同状况下,白磷的稳定性比红磷
③ $H_2(g) + \frac{1}{2}O_2(g) = H_2O(g)$ $\Delta H = -242.0 \text{ kJ \cdot mol}^{-1}$ 请写出 $Imol $

断开1molH-O键与断开1molH-Cl键所需能量相差约为 kJ。

17. (16 分)某研究小组利用 $H_2C_2O_4$ 溶液和酸性 $KMnO_4$ 溶液的反应来探究外界条件改变对化学反应速率的影响,实验如下:

	实验温度 / K							
实验序号		KMnO ₄ 溶液(含硫酸)		H ₂ C ₂ O ₄ 溶液		H ₂ O	溶液颜色褪至无色 溶液颜色褪至无色 时所需时间 / s	
		V / mL	$c / (mol \cdot L^{-1})$	V / mL	$c / \left(mol \cdot L^{-1} \right)$	V / mL		
1	290	1	0.02	4	0.1	0	6	
2	T ₁	1	0.02	3	0.1	V_1	8	
3	315	1	0.02	V ₂	0.1	1	t ₁	
4	290	3	0.02	1	0.1	V_3		

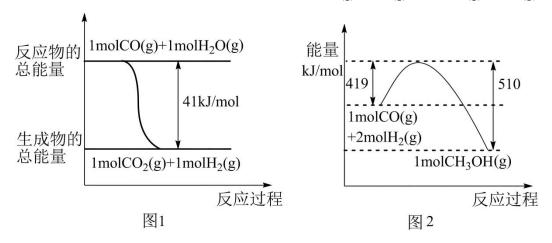
回答下列问题:

(1)写出 $H_2C_2O_4$ 溶液和酸性 $KMnO_4$ 溶液的反应的离子方程式	•

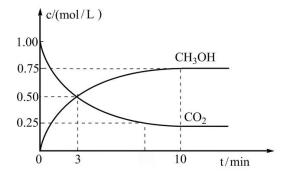
(2)通过实验①②,可探究______的改变对反应速率的影响,其中 V_i =_____。

(3)通过实验_____(填实验序号)可探究温度变化对反应速率的影响,计算出实验②中用 KMnO₄浓度变化表示的反应速率_____(结果保留两位小数)。

(4)实验过程中发现,反应开始一段时间溶液褪色不明显,不久后迅速褪色。甲同学认为是反应放热导致溶液温度升高所致,重做实验②,测得反应过程中不同时间的温度如下:

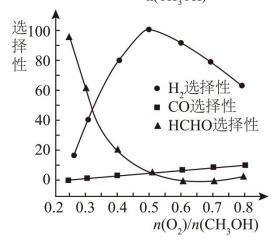

时间 / s	0	2	4	6	8	10
温度 / K	290	291	291	291.5	292	292

①结合实验目的与表中数据,得出的结论是。


②猜想可能是______的影响。若证明猜想正确,除了酸性高锰酸钾溶液和草酸溶液外,还需要选择的最佳试剂 试卷第 6页, 共 8页

是	(填字母)。
Æ	く換丁りん

- A. 硫酸钾 B. 水 C. 二氧化锰 D. 硫酸锰
- (5) 实验④中未观察到溶液褪色,原因可能是
- 18. (16分) 能源问题是人类社会面临的重大课题,甲醇是一种可再生能源,具有开发应用的广阔前景,研究甲醇具有重要意义。
- I.利用工业废气中的 CO₂ 可制取甲醇, 其反应为: CO₂(g)+3H₂(g) ⇌ CH₃OH(g)+H₂O(g)。


- (1) 已知反应的能量变化如图 1、图 2 所示,由二氧化碳和氢气制备甲醇的热化学方程式为_____。
- (2) 下列措施中有利于增大反应: $CO_2(g)+3H_2(g)$ ⇒ $CH_3OH(g)+H_2O(g)$ 的反应速率且利于反应正向进行的是
- A. 使用高效催化剂
- B. 降低反应温度
- C. 随时将 CH₃OH 与反应混合物分离 D. 增大体系压强(减小容器容积)
- (3)为探究用 CO_2 生产燃料甲醇的反应原理,现进行如下实验: 在一恒温恒容密闭容器中,充入 $lmolCO_2$ 和 $3molH_2$,进行上述反应。测得 CO_2 和 $CH_3OH(g)$ 的浓度随时间变化如图所示。从反应开始到平衡, $v(H_2)=$ ______,从温度和压强的角度分析,能使平衡体系中 $\frac{n(CH_3OH)}{n(CO_2)}$ 增大的措施有______(答 2 点)。

- (4) 在恒温恒容条件下, 能证明上述反应已达平衡的有
- ①混合气体的压强不变;
- ②混合气体的密度不变;
- ③混合气体的总物质的量不变;
- ④混合气体的平均相对分子质量不变;
- ⑤CO₂、H₂、CH₃OH、H₂O 的浓度比为 1:3:1:1
- ⑥消耗 3molH₂的同时生成了 1molCH₃OH

II.工业上利用甲醇制备氢气的常用方法有两种。

- (1) 甲醇蒸汽重整法。主要反应为 $CH_3OH(g)$ 章 CO(g)+2 $H_2(g)$;设在容积为 2.0L 的密闭容器中充入 0.60mol $CH_3OH(g)$,体系压强为 P_1 ,在一定条件下达到平衡时,体系压强为 P_2 ,且 P_2/P_1 =2,则该条件下平衡常数 K=____。
- (2) 甲醇部分氧化法。在一定温度下以 Ag/CeO_2 —ZnO 为催化剂时原料气比例对反应的选择性(选择性越大,表示生成的该物质越多)影响关系如图所示,则当 $\frac{n(O_2)}{n(CH_3OH)}$ =0.25 时, CH_3OH 与 O_2 发生的主要反应方程式____。在制备 H_2 时最好控制 $\frac{n(O_2)}{n(CH_3OH)}$ =____。(保留一位小数)

